 0 - 1 Knapsack Problem
Medium Accuracy: 47.21% Submissions: 80183 Points: 4

You are given weights and values of N items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. Note that we have only one quantity of each item.
In other words, given two integer arrays val[0..N-1] and wt[0..N-1] which represent values and weights associated with N items respectively. Also given an integer W which represents knapsack capacity, find out the maximum value subset of val[] such that sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either pick the complete item or don’t pick it (0-1 property).

Example 1:

Input:
N = 3
W = 4
values[] = {1,2,3}
weight[] = {4,5,1}
Output: 3


Example 2:

Input:
N = 3
W = 3
values[] = {1,2,3}
weight[] = {4,5,6}
Output: 0

Complete the function knapSack() which takes maximum capacity W, weight array wt[], value array val[], and the number of items n as a parameter and returns the maximum possible value you can get.

Expected Time Complexity: O(N*W).
Expected Auxiliary Space: O(N*W)

Constraints:
1 ≤ N ≤ 1000
1 ≤ W ≤ 1000
1 ≤ wt[i] ≤ 1000
1 ≤ v[i] ≤ 1000

We are replacing the old Disqus forum with the new Discussions section given below.

### Editorial

We strongly recommend solving this problem on your own before viewing its editorial. Do you still want to view the editorial?

#### My Submissions:  