  Showing: Handle Score
@Ibrahim Nash 5725
@akhayrutdinov 5111
@mb1973 4989
@Quandray 4908
@saiujwal13083 4156
@sanjay05 3762
@marius_valentin_dragoi 3511
@sushant_a 3453
@KshamaGupta 3318
@the_coder95 3302
Box Stacking
Medium Accuracy: 48.37% Submissions: 17518 Points: 4

You are given a set of N types of rectangular 3-D boxes, where the ith box has height h, width w and length l. You task is to create a stack of boxes which is as tall as possible, but you can only stack a box on top of another box if the dimensions of the 2-D base of the lower box are each strictly larger than those of the 2-D base of the higher box. Of course, you can rotate a box so that any side functions as its base.It is also allowable to use multiple instances of the same type of box. You task is to complete the function maxHeight which returns the height of the highest possible stack so formed.

Note:
Base of the lower box should be strictly larger than that of the new box we're going to place. This is in terms of both length and width, not just in terms of area. So, two boxes with same base cannot be placed one over the other.

Example 1:

Input:
n = 4
height[] = {4,1,4,10}
width[] = {6,2,5,12}
length[] = {7,3,6,32}
Output: 60
Explanation: One way of placing the boxes is
as follows in the bottom to top manner:
(Denoting the boxes in (l, w, h) manner)
(12, 32, 10) (10, 12, 32) (6, 7, 4) (5, 6, 4)
(4, 5, 6) (2, 3, 1) (1, 2, 3)
Hence, the total height of this stack is
10 + 32 + 4 + 4 + 6 + 1 + 3 = 60.
No other combination of boxes produces a height
greater than this.


â€‹Example 2:

Input:
n = 3
height[] = {1,4,3}
width[] = {2,5,4}
length[] = {3,6,1}
Output: 15


You don't need to read input or print anything. Your task is to complete the function maxHeight() which takes three arrays height[], width[], length[], and N as a number of boxes and returns the highest possible stack height which could be formed.

Expected Time Complexity : O(N*N)
Expected Auxiliary Space: O(N)

Constraints:
1<=N<=100
1<=l,w,h<=100

### Editorial

We strongly recommend solving this problem on your own before viewing its editorial. Do you still want to view the editorial?

#### My Submissions:  