Geeksforgeeks

Error

×

Leaderboard

Showing:

Handle | Score |
---|---|

@Ibrahim Nash | 5725 |

@blackshadows | 5685 |

@akhayrutdinov | 5111 |

@mb1973 | 4989 |

@Quandray | 4908 |

@saiujwal13083 | 4156 |

@sanjay05 | 3762 |

@marius_valentin_dragoi | 3511 |

@sushant_a | 3453 |

@KshamaGupta | 3318 |

@the_coder95 | 3302 |

Complete Leaderboard | |

Handle | Score |

@avaiesshaik782 | 662 |

@arpitsatnalika | 629 |

@code_it_ | 591 |

@prakharxyz | 583 |

@tujhekya | 542 |

@Rahul Jadhav 1 | 458 |

@sivanandh03 | 448 |

@satyam0460 | 433 |

@iamronak | 424 |

@imnm | 424 |

@18eumc107 | 421 |

Complete Leaderboard |

We define f (X, Y) as number of different corresponding bits in binary representation of X and Y. For example, f (2, 7) = 2, since binary representation of 2 and 7 are 010 and 111, respectively. The first and the third bit differ, so f (2, 7) = 2.

You are given an array **A** of **N** integers, A_{1}, A_{2} ,…, A_{N}. Find sum of f(A_{i}, A_{j}) for all pairs (i, j) such that 1 ≤ i, j ≤ N. Return the answer modulo 10^{9}+7.

**Example 1:**

**Input:** N = 2
A = {2, 4}
**Output:** 4
**Explaintion:** We return
f(2, 2) + f(2, 4) +
f(4, 2) + f(4, 4) =
0 + 2 +
2 + 0 = 4.

**Example 2:**

**Input:** N = 3
A = {1, 3, 5}
**Output:** 8
**Explaination:** We return
f(1, 1) + f(1, 3) + f(1, 5) +
f(3, 1) + f(3, 3) + f(3, 5) +
f(5, 1) + f(5, 3) + f(5, 5) =
0 + 1 + 1 +
1 + 0 + 2 +
1 + 2 + 0 = 8.

**Your Task:**

You do not need to read input or print anything. Your task is to complete the function **countBits()** which takes the value N and the array A as input parameters and returns the desired count modulo 10^{9}+7.

**Expected Time Complexity:** O(N)

**Expected Auxiliary Space:** O(1)

**Constraints:**

1 ≤ N ≤ 10^{4}

-2,147,483,648 ≤ A[i] ≤ 2,147,483,647

Login to report an issue on this page.

We strongly recommend solving this problem on your own before viewing its editorial. Do you still want to view the editorial?

Yes
Find sum of different corresponding bits for all pairs

...

Please choose 'ReadOnlyMode' if you needn't to 'Edit' the problem e.g. viewing OJ's solution, TestCase Files (TCFs), TimeLimit etc.