DAYS
HOUR
MINS
SEC
Error
A Hamiltonian path, is a path in an undirected or directed graph that visits each vertex exactly once. Given an undirected graph the task is to check if a Hamiltonian path is present in it or not.
Example 1:
Input:
N = 4, M = 4
Edges[][]= { {1,2}, {2,3}, {3,4}, {2,4} }
Output:
1
Explanation:
There is a hamiltonian path:
1 -> 2 -> 3 -> 4
Example 2:
Input:
N = 4, M = 3
Edges[][] = { {1,2}, {2,3}, {2,4} }
Output:
0
Explanation:
It can be proved that there is no
hamiltonian path in the given graph
Your task:
You don't need to read input or print anything. Your task is to complete the function check() which takes the N( the number of vertices), M (Number of edges) and the list of Edges[][] (where Edges[i] denotes the undirected Edge between vertices Edge[i][0] and Edges[i][1] ) as input parameter and returns true (boolean value) if the graph contains Hamiltonean path,otherwise returns false.
Expected Time Complexity: O(N!).
Expected Auxiliary Space: O(N+M).
Constraints:
1 ≤ N ≤ 10
1 ≤ M ≤ 15
Size of Edges[i] is 2
1 ≤ Edges[i][0],Edges[i][1] ≤ N
We strongly recommend solving this problem on your own before viewing its editorial. Do you still want to view the editorial?
Yes