Longest Path in a matrix
Submissions: 1257   Accuracy:

26.49%

  Difficulty: Medium   Marks: 4

Given a n*n matrix, find the maximum length path (starting from any cell) such that all cells along the path are in increasing order with a difference of 1.

We can move in 4 directions from a given cell (i, j), i.e., we can move to (i+1, j) or (i, j+1) or (i-1, j) or (i, j-1) with the condition that the adjacent cells have a difference of 1.

Input:
The first line of input contains an integer T denoting the number of test cases. Then T test cases follow. Each test case contains an integer n denoting the size of the nxn matrix. The following lines contain the nxn matrix. 

Output:
Print the length of the longest path.

Constraints:
1<=T<=100
1<=n<=50
1<=arr[i][j]<=50

Example:
Input:

2
3
1 2 9 5 3 8 4 6 7
4
1 7 8 9 2 11 12 17 3 15 14 13 4 5 25 30

Output:
4
5

** For More Input/Output Examples Use 'Expected Output' option **

Contributor: Ayush Govil
Author: Ayush Govil 1


If you have purchased any course from GeeksforGeeks then please ask your doubt on course discussion forum. You will get quick replies from GFG Moderators there.



Need help with your code? Please use ide.geeksforgeeks.org, generate link and share the link here.

to report an issue on this page.