Error
|
|
---|---|
@Ibrahim Nash | 5765 |
@blackshadows | 5715 |
@akhayrutdinov | 5111 |
@mb1973 | 4993 |
@Quandray | 4944 |
@saiujwal13083 | 4506 |
@sanjay05 | 3762 |
@marius_valentin_dragoi | 3516 |
@sushant_a | 3459 |
@verma_ji | 3341 |
@KshamaGupta | 3318 |
Complete Leaderboard | |
|
|
@aroranayan999 | 1286 |
@bt8816103042 | 739 |
@rohitanand | 495 |
@codeantik | 479 |
@shalinibhataniya1097 | 472 |
@amrutakashikar2 | 464 |
@thealchemist627 | 456 |
@akashkale117 | 453 |
@shivanandp12345678910 | 453 |
@dalwainazism125 | 453 |
@SherlockHolmes3 | 447 |
Complete Leaderboard |
Given an array sequence [A1 , A2 ...An], the task is to find the maximum possible sum of increasing subsequence S of length K such that Si1<=Si2<=Si3.........<=Sin.
Example 1:
Input:
N = 8 K = 3
A[] = {8 5 9 10 5 6 19 8}
Output: 38
Explanation:
Possible increasing subsequence of
length 3 with maximum possible
sum is 9 10 9.
Example 2:
Input:
N = 2,K = 2
A[] = {10 5}
Output: -1
Explanation:
Can't make any increasing subsequence
of length 2.
Your Task:
You don't need to read or print anything. Your task is to complete the function max_sum() which takes sequence A as the first parameter and K as the second parameter and returns the maximum possible sum of K-length increasing subsequnece. If not possible return -1.
Expected Time Complexity: O(max(Ai) * n * log(max(Ai)))
Expected Space Complexity: O(max(Ai))
Contraints:
1 <= n <= 100
1 <= Ai <= 100000
We strongly recommend solving this problem on your own before viewing its editorial. Do you still want to view the editorial?
Yes