Minimum Cost Path
##### Submissions: 14315   Accuracy: 42.32%   Difficulty: Hard   Marks: 8

Given a square grid of size N, each cell of which contains integer cost which represents a cost to traverse through that cell, we need to find a path from top left cell to bottom right cell by which total cost incurred is minimum.

Note : It is assumed that negative cost cycles do not exist in input matrix.

Input:
The first line of input will contain number of testcases T. Then T test cases follow. Each test case contains 2 lines. The first line of each test case contains an integer N denoting the size of the grid. Next line of each test contains a single line containing N*N space separated integers depicting the cost of respective cell from (0,0) to (N,N).

Output:
For each test case output a single integer depecting the minimum cost to reach the destination.

Constraints:
1 <= T <= 50
1 <= N <= 50

Example:
Input:

2
5
31 100 65 12 18 10 13 47 157 6 100 113 174 11 33 88 124 41 20 140 99 32 111 41 20
2
42 93 7 14

Output:
327
63

Explanation:
Testcase 1:

Grid is:
31, 100, 65, 12, 18,
10, 13, 47, 157, 6,
100. 113, 174, 11, 33,
88, 124, 41, 20, 140,
99, 32, 111, 41, 20

A cost grid is given in below diagram, minimum
cost to reach bottom right from top left
is 327 (31 + 10 + 13 + 47 + 65 + 12 + 18 + 6 + 33 + 11 + 20 + 41 + 20)

#### ** For More Input/Output Examples Use 'Expected Output' option **

Author: harshitsidhwa

If you have purchased any course from GeeksforGeeks then please ask your doubt on course discussion forum. You will get quick replies from GFG Moderators there.