The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other. Given an integer n, print all distinct solutions to the n-queens puzzle. Each solution contains distinct board configurations of the n-queens’ placement, where the solutions are a permutation of [1,2,3..n] in increasing order, here the number in the *ith* place denotes that the *ith*-column queen is placed in the row with that number. For eg below figure represents a chessboard [3 1 4 2].

**Input:**

The first line of input contains an integer T denoting the no of test cases. Then T test cases follow. Each test case contains an integer n denoting the size of the chessboard.

**Output:**

For each test case, output your solutions on one line where each solution is enclosed in square brackets '[', ']' separated by a space . The solutions are permutations of {1, 2, 3 …, *n*} in increasing order where the number in the ith place denotes the ith-column queen is placed in the row with that number, if no solution exists print -1.

**Constraints:**

1<=T<=10

1<=n<=10

**Example:
Input**

2

1

4

[1 ]

[2 4 1 3 ] [3 1 4 2 ]

tweyes | 69 |

JulienDELSUC | 50 |

Praveen Shankar Thooyavan | 36 |

SachinTiwari | 34 |

RezaSar | 32 |

dILdAr sK | 641 |

surbhi_7 | 552 |

ERS | 462 |

trnpandey | 419 |

Diprotiv Sarkar | 349 |

akhayrutdinov | 4495 |

sanjay05 | 3633 |

Ibrahim Nash | 3568 |

Quandray | 3144 |

wmlam | 2399 |