Path in Matrix
Submissions: 22185   Accuracy:

42.91%

  Difficulty: Medium   Marks: 4

Given a N X N  matrix Matrix[N][N] of positive integers.  There are only three possible moves from a cell Matrix[r][c].

1. Matrix[r+1][c]

2. Matrix[r+1][c-1]

3. Matrix[r+1][c+1]

Starting from any column in row 0, return the largest sum of any of the paths up to row N-1.

Input:
The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.
The first line of each test case contains a single integer N denoting the order of matrix. Next line contains N*N integers denoting the elements of the matrix in row-major form.

Output:

Output the largest sum of any of the paths starting from any cell of row 0 to any cell of row N-1. Print the output of each test case in a new line.

Constraints:

1<=T<=20
2<=N<=20
1<=Matrix[i][j]<=1000 (for all 1<=i<=N && 1<=j<=N)

Example:

Input:
1
2
348 391 618 193

Output:
1009

Explanation: In the sample test case, the path leading to maximum possible sum is 391->618.  (391 + 618 = 1009)

** For More Input/Output Examples Use 'Expected Output' option **

Author: dipjal1996


If you have purchased any course from GeeksforGeeks then please ask your doubt on course discussion forum. You will get quick replies from GFG Moderators there.



Need help with your code? Please use ide.geeksforgeeks.org, generate link and share the link here.


to report an issue on this page.