Given an NxN chessboard and a Knight at position (x,y). The Knight has to take exactly K steps, where at each step it chooses any of the 8 directions uniformly at random. What is the probability that the Knight remains in the chessboard after taking K steps, with the condition that it can’t enter the board again once it leaves it.

**Input:**

The first line of input contains an integer T denoting the number of test cases. Then T test cases follow. The first line of each test case contains four integers N, X, Y and K. Where N * N is the size of the board and (X, Y) denotes the starting position of the chess piece.

**Output:**

Output the probability that the knight remains on the board. Print the answer exactly upto 6 decimal places for each testcase in a new line.

**Constraints:**

1<= T <=100

0<= N, K, X, Y <=100

**Example:**

Input:

1

8 0 0 3

Output:

0.125000

Author: sujnesh

If you have purchased any course from GeeksforGeeks then please ask your doubt on course discussion forum. You will get quick replies from GFG Moderators there.

saiujwal13083 | 489 |

sudeep235poojary | 302 |

VithalNakod | 272 |

AshutoshPal1 | 254 |

go__karuna | 253 |

Soseph_Jtalin | 792 |

AshutoshPal1 | 722 |

architjindal__ | 648 |

go__karuna | 577 |

ArbazGrewal | 527 |

blackshadows | 5362 |

Ibrahim Nash | 5242 |

akhayrutdinov | 5111 |

mb1973 | 4931 |

Quandray | 4598 |

Login to report an issue on this page.