Given a matrix of dimension **r*****c** where each cell in the matrix can have values 0, 1 or 2 which has the following meaning:

**0 **: Empty cell

**1** : Cells have fresh oranges

**2** : Cells have rotten oranges

So, we have to determine what is the minimum time required to rot all oranges. A rotten orange at index [i,j] can **r**ot other fresh orange at indexes [i-1,j], [i+1,j], [i,j-1], [i,j+1] (**up**, **down**, **left** and **right**) in unit time. If it is impossible to rot every orange then simply return -1.

**Input:**

The first line of input contains an integer T denoting the number of test cases. Each test case contains two integers r and c, where r is the number of rows and c is the number of columns in the array a[]. Next line contains space separated r*c elements each in the array a[].

**Output:**

Print an integer which denotes the minimum time taken to rot all the oranges (-1 if it is impossible).

**Constraints:**

1 <= T <= 100

1 <= r <= 100

1 <= c <= 100

0 <= a[i] <= 2

**Example:
Input:**

2

3 5

2 1 0 2 1 1 0 1 2 1 1 0 0 2 1

3 5

2 1 0 2 1 0 0 1 2 1 1 0 0 2 1

2

-1

**Explanation:
Testcase 1:**

2 | 1 | 0 | 2 | 1

1 | 0 | 1 | 2 | 1

1 | 0 | 0 | 2 | 1

Oranges at positions {0,0}, {0, 3}, {1, 3} and {2, 3} will rot oranges at {0, 1}, {1, 0}, {0, 4}, {1, 2}, {1, 4}, {2, 4} during 1st unit time. And, during 2nd unit time, orange at {1, 0} got rotten and will rot orange at {2, 0}. Hence, total 2 unit of time is required to rot all oranges.

Author: shashwat jain

If you have purchased any course from GeeksforGeeks then please ask your doubt on course discussion forum. You will get quick replies from GFG Moderators there.

thanuvinu94 | 425 |

the_coder95 | 380 |

RishabhTanwar1 | 280 |

shubham3174 | 208 |

RitikRosan | 202 |

the_coder95 | 1226 |

RishabhTanwar1 | 1000 |

thanuvinu94 | 634 |

tathagat289 | 628 |

themanhasnoname | 620 |

blackshadows | 5331 |

Ibrahim Nash | 5219 |

akhayrutdinov | 5111 |

mb1973 | 4885 |

Quandray | 4547 |

Login to report an issue on this page.